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R ESU LTS
Selection of compound library and cell lines

To assess our platform’s capability1 to identify diverse responses, 
we selected a set of 341 FDA-approved compounds targeting a 
broad range of cellular pathways. Figure 1 illustrates the 22 target 
pathways within this library, as well as the number of compounds 
included per pathway.  The chosen cell lines—A549 (lung 
adenocarcinoma)2, MDA-MB-231 (breast adenocarcinoma)3, and 
U-2 OS (bone osteosarcoma)4—encompass a broad spectrum 
of biology and have applications in various in vitro assays. A549 
cells are prevalent in drug screening assays, MDA-MB-231 cells 
are frequently employed in metastasis research, and U-2 OS cells 

are commonly used in optical imaging assays like Cell Painting.5 
Given this diversity, we anticipated a range of biological 
responses to the compounds.

Quantifying phenoactivity across cell lines

Each cell line was seeded at an optimized density, allowed 
to grow for 24 hours, and then treated with the library of 341 
FDA-approved compounds at a concentration of 10 μM.  Cell 
responses were measured across 27 impedance parameters 
every 15 minutes for 48 hours following compound treatment.  
Each compound was assigned a phenoactivity score which 
quantifies the extent of phenotypic divergence from control (i.e. 
DMSO) across all the measured parameters, in that particular 
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INTRODUC TION
Assay development relies on selecting an appropriate cell line that aligns with downstream in vivo models and accurately represents 
relevant physiological states. Choosing the right phenotypic readout for a specific cellular manipulation is equally critical. CytoTronics’ Pixel 
platform, offering a comprehensive array of measurements across diverse cell lines, stands as an invaluable resource for biologists striving 
to identify optimal biological models and assay readouts.

In this study, we demonstrate the platform’s ability to capture distinct responses in diverse cell lines by generating readouts across multiple 
biological parameters. Three cell lines—A549, MDA-MB-231, and U-2 OS—derived from various human tissues were treated with the same 
compound library, illustrating the broad spectrum of responses our system can capture. This not only emphasizes the importance of multi-
parametric readouts in high-throughput screening but also underscores the diverse biological insights gleaned from different cell lines.

Figure 1. Compound library grouped by 
biological pathway. The total number of 
compounds in each pathway is presented 
in parentheses with the pie chart showing 
the percentage each pathway occupies in 
the total library.
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cell line. Based on the phenoactivity score, compounds were 
categorized into two broad groups: phenoactive and non-
phenoactive. Phenoactive compounds demonstrated a high-
dimensional phenotypic response surpassing the maximum 
response of the DMSO control group, while non-phenoactive 
compounds were indistinguishable from the control group.

Figure 2A presents the phenoactivity scores for all tested 
compounds across the three cell lines. As anticipated, the 
total number of phenoactive compounds varied among the 
cell lines. Notably, U-2 OS exhibited the highest number of 
phenoactive compounds (i.e. hits), while MDA-MB-231 had 
some of the highest phenoactivity scores, indicating notably 
distinct phenotypic changes from the control. These results 
provide valuable benchmarks for predicting and understanding 
compound responses across specific cell lines.

In addition to differences in number of phenoactive compounds, 
the specific target pathways exhibiting phenoactivity also 
varied as illustrated in Figure 2B. For instance, over 80% of 
compounds targeting G protein-coupled receptors (GPCRs) and 
transmembrane transporters induced a response in U-2 OS cells, 
whereas only 40% triggered a phenoactive response in A549 or 
MDA-MB-231 cells. Conversely, over 90% of JAK/STAT inhibitors 
were found to be phenoactive in MDA-MB-231 cells, compared 
to 50% and 70% in U-2 OS and A549 cells, respectively. These 
findings provide insight into how specific cell types may be better 
suited for identifying compounds targeting certain pathways, 
underscoring the pivotal role of the cell line in influencing the 
outcome of pathway-targeted investigations.
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Figure 2. Quantification of 
phenoactive compounds across 
cell lines. (A) Phenoactivity scores 
for all 341 compounds across 
all three cell lines. The red line 
represents the maximum DMSO 
response for each cell line, and 
compounds above this line are 
considered phenoactive. (B) The 
percentage of compounds that 
are phenoactive for each cell line 
designated by pathway. Results 
are ordered by largest absolute 
difference in the number of 
phenoactive compounds 
between the three cell lines.
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Figure 3. Fold change of 11 select biological parameters in response to 
compound treatment, classified by pathway for each of the three cell lines in 
the study. The heat maps display the median Log2 fold change for the hits in 
each cell line compared to DMSO. 
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Exploring the diverse biological responses across 
cell lines

Finally, we examined the varied biological responses across the 
different cell lines. We quantified the modulation of 11 distinct 
cellular responses, including parameters such as cell death, death 
rate, growth, alterations in attachment (detachment/attachment), 
cell shape (flatness/height), tissue barrier dynamics (barrier loss/
barrier strength), and motility (staticity/dynamicity). 

Figure 3 illustrates the fold changes in various biological 
parameters for each cell line across different pathways. The 
biological responses varied significantly among cell lines, based 
on both overall phenoactivity and pathway engagement (Figure 
2).  For instance, A549 cells showed substantial changes in cell 
height and staticity across several pathways. In U-2 OS cells, the 
most significant changes were observed in flatness, attachment, 
and barrier strength. Meanwhile, MDA-MB-231 cells exhibited 
prominent responses in cell death and increases in death rate. 
Additionally, in some instances, compounds induced the same 
response in all three cell lines; for example, cytoskeletal signaling 
caused an increase in flatness in all three cell types.

CONCLUSION
In this study, we employed CytoTronics’ electrical imaging 
microplate to assess compound responses across a diverse 
range of cell lines. The marked differences in overall 
phenoactivity, as well as the distinct pathway responses can 
be attributed to the genetic, functional, and morphological 
distinctions across the lines. The utilization of multiparametric 
readouts enables us to detect unique responses across cell 
lines without prior knowledge of the expected phenotype. 
Furthermore, this highlights how identical cellular pathways 
can evoke remarkably different morphological and functional 
responses in different cell types, facilitating precise evaluations 
of cell lines for assay optimization purposes.

M E THODS
Cell Lines 

All cell lines were obtained from ATCC and maintained in a 
humidified incubator at 37°C and 5% CO2.  A549 (CCL-185), 
MDA-MB-231 (HTB-26), and U-2 OS (HTB-96) cells were cultured in 
DMEM supplemented with 10% FBS and Penicillin-Streptomycin.

Treatment and Measurement

Impedance measurements were taken at 0.25, 1, 4, and 16 kHz 
inside a humidified incubator at 37°C and 5% CO2 every 15 minutes 
throughout the experiment. Cells were seeded at 15,000 cells 
per well and allowed to grow for 24 hours prior to compound 
treatment. A subset of 341 compounds were prioritized from the 
FDA-approved Drug Library (L1300, Selleckchem) to produce 
a wide array of cellular responses. Compounds were added at 
24 hours by exchanging half the media in the plate with fresh 
media with 2X final drug concentration (10 μM). All drugs were 
reconstituted in DMSO with a final concentration in the assay  
< 1% (v/v).  Each 96-well plate contained both negative and 
positive controls as experimental anchors.

Data Analysis

First, DMSO controls were examined to ensure assay robustness. 
Quartile outlier analysis was then performed to eliminate any 
outlier controls across plates. All data was subsequently treated 
as a single experiment. 

Initial normalization was conducted relative to the time point one 
hour before drug addition, followed by normalization to the mean 
DMSO response. Bio-basis scores  were subsequently computed 
for the entire dataset. Phenoactivity was calculated using the 
residual sum of squares distance from the DMSO response across 
bio-bases. Compounds demonstrating a high phenoactivity 
response were identified as those exhibiting phenoactivity 
surpassing all DMSO controls. The fold change of compound 
response compared to the DMSO response was calculated across 
the remaining bio-bases. Log2 (fold change) was utilized for cross-
comparison among compounds and cell lines. Drugs exhibiting 
high phenoactivity were grouped by pathway and the median 
Log2 (fold change) was computed and represented as a heat map 
for each cell line. Heat maps were constrained between Log2= 0 
and Log = 2 to facilitate qualitative comparison across cell lines.
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